

FINAL PROGRESS REPORT
Developing Collaborative Profiles of Attackers: A Longitudinal Study

1. ContentThe Final Progress Report covers the entire performance period. Please do not delay submission while you are waiting
for Reprints of publications.
2. Requirement: Final Progress Reports must include:

a. A ”Memorandum of Transmittal”, Enclosure 3.
b. A Filled out DD Form 882 (Report of Inventions and Subcontracts)
c. A “Final Progress Report”, including the following information:

(1) Foreword (optional)
(2) Table of Contents (if report is more than 10 pages)
(3) List of Appendixes, Illustrations and Tables (if applicable)
(4) Statement of the problem studied
(5) Summary of the most important results
(6) Listing of all publications and technical reports supported under this grant or contract. Provide the
list with the following breakout, and in standard format showing authors, title, journal, issue, and date.

(a) Papers published in peer-reviewed journals: NONE
(b) Papers published in non-peer-reviewed journals or in conference proceedings

M. Locasto, J. Parekh, A. Keromytis, S. Stolfo ”Towards Collaborative Security and P2P Intrusion Detection”, Proceedings of the
2005 IEEE Workshop on Information Assurance and Security, June 2005

Ke Wang, Janak J. Parekh, Salvatore J. Stolfo ”Anagram: A Content Anomaly Detector Resistant To Mimicry Attack” In
Proceedings of the Nineth International Symposium on Recent Advances in Intrusion Detection(RAID 2006)

Janak J. Parekh, Ke Wang, Salvatore J. Stolfo ” Privacy-Preserving Payload-Based Correlation for Accurate Malicious Traffic
Detection ” In SIGCOMM Workshop on Large Scale Attack Defence 2006

Ke Wang, ”Network Payload-based Anomaly Detection and Content-based Alert Correlation”, PhD thesis, 2006

Janak J. Parekh, ”Privacy-Preserving Distributed Event Corroboration”, PhD Thesis, 2007
(c) Papers presented at meetings, but not published in conference proceedings

M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T. Malkin, V. Misra ”Collaborative Distributed Intrusion Detection”, CU Tech
Report CUCS-012-04, 2004

CUCS D-NAD Group ”On the Feasability of Distributed Intrusion Detection”, Technical Report, Sept 2004
(d) Manuscripts submitted, but not published: NONE
(e) Technical reports submitted to ARO

(7) List of all participating scientific personnel showing any advanced degrees earned by them while
employed on the project

Janak Parekh
(8) Report of Inventions (by title only)

Systems. Methods, and Media for Outputing Data Based on Anomaly Detection, 2006
(9) Bibliography
(10) Appendixes

d. A ”Standard Form 298 (Enclosure 1)”, including the following required entries:
(1) Block 2, Report Date
(2) Block 3, Report Type and Dates Covered
(3) Block 4, Proposal Title
(4) Block 5, Contract/Grant Number
(5) Block 6, Author(s)
(6) Block 7, Performing Organization Name(s) and Address(es)

(7) Block 13, Abstract (must not exceed the 200 word limitation)
(8) Block 14, Subject Terms
(9) Block 15, Number of Pages

1 Payload Anomaly Detection and Alert Correlation

1.1 Payload Anomaly Detection

We have developed two methodologies to analyze and model normal payloads that are expected to be delivered to
network services or applications: PAYL, which implements anomaly detection based on frequency-based 1-gram mod-
eling, and Anagram, which uses binary-based mixtures of higher order n-gram modeling (n > 1). Both sensors train
on normal unencrypted content flows and employ service-specific models to test for suspicious traffic.1 Alerts are
generated on traffic sufficiently deviant from normal; it is these alerts that we wish to share with other sites to resolve
false positives from true zero-day attacks.

PAYL: 1-gram frequency modeling PAYL’s models are 1-gram byte frequency distributions conditioned on packet
length; tested traffic is classified as normal or malicious by computing the Mahalanobis distance between the distribu-
tion of the candidate packets and the frequency model. A larger distance means bigger deviation from the model and
a more abnormal packet; thresholding differentiates normal from malicious traffic.

A raw PAYL alert typically contains metadata, including the source and target IP/port pair, payload length, and
score (distance from model). Additionally, the suspicious packet may be included in its alert. While the payloads can
be shared, they significantly increase alert sizes and run into privacy issues, especially for misclassified traffic, i.e.
false positives. While PAYL’s false positive rates have been determined to be very low [11], the notion of transmitting
any raw payload inhibits collaboration among defensive sites.

Anagram: n-gram binary modeling Anagram uses an alternative approach to anomaly detection via binary-based
high order n-gram modeling. Compared to 1-gram, higher order n-grams are better at modeling sequential content
information in packets, and thus it is capable of detecting significant anomalous byte sequences and their location
within a packet. To avoid significant memory overhead associated with n-gram frequency distributions, only a binary
(yes/no) statistic is kept for each possible gram. Scoring is accomplished by counting the percentage of not-seen-before
(i.e. unusual) n-grams out of the total n-grams in the packet, and thresholding is again applied to differentiate traffic.

Surprisingly, analysis shows [12] that binary-based modeling produces extremely good results; it turns out the
additional data representation of frequency-based modeling is less advantageous when the space of potential grams
grows significantly (e.g., the likelihood of having significant frequency information for distinct 5-grams, or 2565

grams, is significantly smaller than for the 256 distinct 1-gram), and the representational power of higher-order n-
grams effectively offsets the loss of frequency information.

The structure of a raw Anagram alert is similar to that of a raw PAYL alert.

Bloom filters Even though binary-based modeling significantly reduces space overhead, there is still a significant
number of possible n-grams as n increases, and a typical hash set structure uses at least 4 bytes per entry. Since only
the binary set property is needed, we can use a more efficient, bit-based representation to store the model, reducing
data requirements by an order of magnitude. A Bloom filter [1] is one such structure; it is represented as a bit array of
n bits, where any individual bit i is set if the hash of an input value, mod n, is i.

A Bloom filter contains no false negatives, but may contain false positives if collisions occur; the false positive rate
can be optimized by changing the size of the bit array to avoid saturation, as well as using multiple hash functions (and
requiring all of them to be set for an item to be verified as present in the Bloom filter). Operations on a Bloom filter are
also O(1), keeping computational overhead low. Finally, a Bloom filter has interesting privacy-preserving properties;
we explore these in the next section.

1 Anagram utilizes other information and is semi-supervised.

1.2 Correlation Techniques

We developed several techniques (both raw and privacy-preserving) to support content-based alert correlation. First,
however, we develop several metrics as to how we can best compare these techniques.

Evaluating correlation techniques On one extreme, we can consider the idea of transmitting the raw packets that
generated alerts; while this enables any correlation technique, we consider it infeasible because of the sheer amount of
data and the fact it is not privacy-preserving. On the other end of the spectrum, we can consider privately-encrypted
packet content: unless the key is shared, it essentially appears as noise to peers—but this requires all or no trust. The
techniques in this paper fall somewhere in between, and we characterize their relative merits from two perspectives:
our ability to correlate data given a transformed version of packets and the amount of privacy that is gained using
different privacy-preserving transformations of packet content.

Correlation ability. The fundamental question, given any technique, is whether it is possible to correlate alerts
with low false positive and low false negative rates. Given raw packets that generate an alert, there are several well-
defined algorithms that aim to accomplish this task. We consider the longest common subsequence, or LCSeq, as an
appropriate baseline, as it is able to find any non-semantic commonality in the candidate packets, and discuss it below.
Other approaches are outside the scope of this paper, which focuses on correlation amongst pure network sensors, i.e.
no host-specific information.

Given a technique, and a collection of alerts, we can then compute a similarity score distribution as each pair of
alerts is tested (see section 1.3). This score distribution then becomes a useful metric for comparing correlation ability.
If we consider LCSeq as a useful baseline, for instance, we can measure the deviation of other techniques from LCSeq
as a comparative measure of how other techniques correlate alerts. Ideally, a network sensor would be able to use a
privacy-enabled technique and get similar results, signifying an increase in the privacy preservation while maintaining
the ability to determine common threats and exploits.

Correlation speed. Finally, one remaining important characteristic is the ability to correlate quickly, especially
if many sites are involved with many alerts being generated and exchanged. This “speed” metric is reflected in two
aspects: the resulting alert size after a transformation is applied, and the computation overhead necessary to transform
the original alert. As with the previous cases, we consider raw packets the baseline: it is the largest unencrypted alert
encoding (up to 1500 bytes, i.e. bounded by packet size, per alert) and LCSeq is amongst the slowest correlation
mechanisms (up to polynomial-time with respect to buffer size).

Alert correlation We correlate content alerts using three main approaches: raw packet alert correlation, frequency-
based alert correlation, and n-gram alert correlation. Techniques for other alerts (e.g., IP alerts) are considered outside
the scope of this paper.

Baseline: Raw payload correlation
As previously discussed, we choose raw packet alert correlation as a baseline technique: it contains the most

complete original information.
SE: String Equality. This is the simplest and most intuitive correlation approach. Two alerts are deemed similar

to each other only if they have identical content. This metric is very strict and does minimize false positives, but has no
tolerance for any variation—fragmentation, polymorphism, obfuscation, etc. Equality is memory and computationally
efficient (linear time).

LCS: Longest Common Substring. LCS is one of the classic string comparison techniques; it is less deterministic
than SE, and is not susceptible to fragmentation. The longer the string that LCS computes, the greater the confidence
that the compared alerts are similar. While it allows minor payload manipulation, multiple changes often cause a short
LCS, reducing confidence in its correlation ability. LCS is reasonably fast; a suffix-tree implementation is linear-time,
but at the cost of having to store a suffix tree per alert (or O(n2) for a naive but memory-efficient algorithm).

LCSeq: Longest Common Subsequence. LCSeq can be considered a generalization of LCS; instead of finding a
single contiguous matching block, LCSeq allows non-matching characters to be interposed. This enables detection de-
spite a variety of payload manipulation operations, including insertion and reordering, and potentially polymorphism.
Like LCS, the length of a LCSeq is an indication of similarity. Its main shortcoming is its computation overhead;
at best, sparse dynamic programming can achieve, on average, O(n lg n) complexity (and can range to O(n2 lg n)
worst-case).

ED: Edit Distance. Edit distance, also known as Levenshtein distance, is another commonly-used approach to
compare string similarity. It computes the smallest number of insertions, deletions, and substitutions required to change
one string into another. In general, it has similar properties as LCSeq.

Frequency-modeled 1-gram alert correlation
Having discussed different techniques for raw payload comparison and correlation, we now describe our first alert

transformation: frequency modeling. As our work on PAYL demonstrates [13], 1-gram frequency models are a good
indicator of the nature of packet content. We can leverage this technique and use frequency distributions as alerts,
either with the corresponding normalized frequency counts or with an approximation of this information.

Frequency Distribution. A packet payload can be represented by its byte frequency distribution, making it nearly
impossible to reconstruct the actual payload except in degenerate cases—the byte distribution contains byte values
but no sequential information. Given two packets with their respective distributions, we can apply standard distance
metrics to determine similarity; Manhattan distance is efficient (O(n) in length of the alert) yet produces a good
approximation of the actual distance. Frequency-based alerts are comparatively sized compared to packets; a floating-
precision frequency distribution takes 1KB of space.

Z-String. A more compact frequency representation based upon the packet payload’s byte distribution is what we
term a “Z-String”, short for “Zipf String” [13]. As its name implies, when a byte frequency distribution is rank-ordered,
it usually produces a Zipf-like distribution (exponentially decreasing frequency values). We rank order the distribution
of a suspicious packet from most frequent to least and drop the frequency counts, resulting in a Z-String. A Z-String
relies on the relative notion of frequency just by the ordering of the individual byte values, and since it is a string, we
can apply the raw matching techniques described above to the Z-Strings themselves. Z-Strings are also often smaller
than full packets (e.g., 8-bit byte-based packets would be referenced by a 256-byte Z-String), and as such the string
comparison times are generally shorter than on the raw packets themselves. However, Z-Strings still have anO(n lg n)
creation overhead in the size of the alphabet. (See section 1.3 for an example generated Z-String.)

Binary-modeled n-gram alert correlation
While frequency-modeled 1-gram alerts offer a measure of privacy, 1-gram modeling cannot represent a sequence

of characters. For worms and other malicious binary payloads, we may want to capture such sequences, as they may
serve as invariants across multiple suspect payloads that can be correlated. As discussed in [12], binary-based modeling
produces surprisingly good results and leads to two different possible alert types.

N-gram signature. We can generate a list of n-grams that are found to be suspicious from an originating packet.
Such a “signature” is position-independent while capturing specific malicious byte sequences. Given two n-gram
signatures, we can simply compute the intersection of the two and threshold the cardinality of the intersected set to
determine a similarity score. Such an intersection is linear time in the length of the signatures by using fast set-based
data structures; depending on the n-gram size and packet content, this can vary significantly; while most packets are
regular and have few n-grams, encrypted traffic, with a very flat byte distribution, can have as many n-grams as the
size of the packet itself. In either case, an n-gram signature is a degenerate form of a raw packet; when distributing
large n-grams, this is clearly not privacy-preserving, as even a 5-gram can contain a password. In these cases, we need
a transformation on the n-gram itself.

Bloom filter n-gram signature. Instead of publishing an n-gram signature, we can instead insert the n-grams into
a Bloom filter and publish it.2 Since Bloom filters support both insert and verify, set intersections can be done between
a (local) “raw” n-gram signature and a published BF n-gram signature, identifying the same n-grams as the previous
technique without yielding other, potentially sensitive n-grams. This approach is also linear in time but leverages a
BF’s space efficiency. Optionally, multiple alerts can be published via a single Bloom filter, treating the BF as a bag
of suspicious n-grams. This enables a multiplicative reduction in the amount of data transmitted and work needed to
compute intersections.

Incidentally, correlating two BF n-gram signatures from different sites can be done via a bitwise AND “inter-
section”; this does not yield actual n-gram content, but may help find commonality between signatures, increasing
confidence that the correct common code has been found when correlated against local data. BF intersection can also
be used for model comparison, e.g., comparing two Anagram models to see if different sites exhibit similar traffic
properties.

1.3 Results

Similarity Score As discussed in section 1.2, we compute a set of similarity scores for every correlation technique,
0 ≤ score ≤ 1, with a higher score implying a more similar pair of alerts.

2 This is not to be confused with Anagram’s use of a BF model; here, individual alerts are placed into Bloom filters.

Raw packets and Z-Strings. For both of these alert types, our basket of string comparisons can be used. For SE,
the score is binary: 0 or 1, where 1 means equality. For LCS and LCSeq, we use the percentage of the common LCS
or LCSeq length out of the total length of candidate strings: score = 2 ∗ C/(L1 + L2), where C is the length of
LCS/LCSeq and Li is the length of string i. For ED, larger values imply dissimilarity; we normalize it as score =
1 − D/(L1 + L2), where D is the computed edit distance and Li the same as LCS/LCSeq.

Frequency distributions. As mentioned before, frequency distributions are compared using Manhattan distance:
M =

∑n

i=1 |xi − yi|, score = M/2.
Raw and BF n-grams. Since we no longer have full packet content, we instead compute the percentage of common

n-grams: score = 2 ∗ Nc/(N1 + N2), where Nc is the number of common n-grams and Ni the number of suspicious
n-grams in alert i. If a Bloom filter is used, a count may be kept with it or approximated by Nb/Nh, i.e., the number
of bits set divided by the number of hash functions used.

Testing with real traffic To compare the approaches, we randomly sampled HTTP packets from three sources: clean
packets collected from www and www1 (two heavily-trafficked Columbia CS webservers), and malicious packets
collected from a sample of attacks (CodeRed, CodeRed II, WebDAV, Mirela, a phpBB forum attack, and an IIS
buffer overflow (MS03-022) exploit). These packets were paired off in three sets: 10,000 “good-vs-good” pairs from
100 packets of www and www1 traffic each, 1,540 “bad-vs-bad” pairs formed in the cross-product of the 56 packet
malicious dataset, and 5,600 “good-vs-bad” pairs of www1 and malicious packets. Similarity scores were generated
for all of the resulting pairs with all techniques, except SE, which is too brittle to produce meaningful comparisons,
and the n-gram analyses, which cannot be compared over an entire packet.

Figure 1 visualizes a small random subset (80 pairs) of the scores generated from the “good-vs-good” source. As
figure 1 shows, the performance plots of the methods appear similar, although their centers and scale values differ as
the scores are not normalized between the correlation methods. On raw payloads, LCSeq and ED bear very similar
results, while comparisons on Z-Strings yield “flatter” results, as less information is compared.

As a more complete experiment, normalized scores were generated and compared for all of the pairs formed
amongst the three datasets. To normalize the scores for a comparison, we first compute similarity score vectors VA, VB

for the same data over two techniques A and B. The center of the two vectors are then aligned by shifting the median
of VA to match VB . Finally, VA’s range is scaled proportionally so that its min and max values match VB’s. This
normalization allows us to compute the Manhattan Distance of the two vectors, distance =

∑n

i=1 |VAi
− VBi

|;
smaller values imply greater similarity between the two methods. Note that these scores are relative and dependent on
the data used; the normalized results are only useful for comparing against a baseline, not as a source of absolute values
or across datasets. These pairs were tested with each technique, and the resulting scores were normalized against and
compared to the LCSeq score over raw packets. Table 1 shows the computed results.

Type Raw- Raw- MD ZStr- ZStr- ZStr-
LCS ED LCS LCSeq ED

G-G .0948 .0336 .0669 .2079 .0794 .0667
B-B .0508 .0441 .0653 .0399 .0263 .0669
G-B .0251 .0241 .0110 .0310 .0191 .0233

Table 1. Manhattan distance from Raw-LCSeq; lower is better.

Averaged over the three scores, Raw-ED is, unsurprisingly, closest to Raw-LCSeq. When privacy-preserving meth-
ods are considered, Manhattan distance performs the best overall, and particularly well for good-vs-bad comparison.
All of the privacy-preserving methods are close when correlating pairs with attack traffic; we conjecture that sig-
nificantly different byte distributions enable effective comparison even when some information is lost via privacy-
preservation.

Cross-Domain Alert Correlation Next, we compare the techniques by examining their actual performance in identi-
fying true alerts from false positives. Ideally, all false alerts are eliminated by a small similarity score (i.e. the site that
produced the alert was the only site that saw this suspicious packet) while true alerts are identified with high similarity
scores (i.e. the attack has been launched against more than one site).

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

im
ila

ri
ty

 S
c
o

re

Raw LCS

Zstr LCS

Raw LCSeq

Raw ED

Manhattan Distance

Zstr LCSeq

Zstr ED

Fig. 1. Similarity score comparison of 80 random pairs of “good-vs-good” alerts.

In this experiment, we first randomly mix the aforementioned collection of attacks into two hours’ traffic from
www and www1, respectively. Multiple instances of attacks—4 for CodeRed and 3 for CodeRed II—are present to
simulate a real-world worm attack. The attacks are also fragmented differently, as CodeRed does in the wild; for
instance, CodeRed may fragment into a sequence of (1448, 1448, 1143) length packets, (4, 375, 1460, 1460, 740) len-
gth packets, etc. Multiple instances also enable testing correlation between different attack types (e.g., CodeRed vs.
CodeRed II).

Next, the two mixed traffic sets are each run through PAYL and Anagram with previously-built models and with
the alerting threshold lowered so that 100% of the attacks are detected, but with higher (and comparable) false positive
rates. The resulting alert sets are correlated against each other using each of the techniques; the results are summarized
in figure 2. For each method, the stacked bar represents correlation results for false positives. The shaded portion of the
bar represents the 99.9% percentile similarity score range, while the white represents the worst-case (highest) score;
in other words, while the worst-case FP score can be high, the vast majority of false positives score relatively low.

The asterisk-marked (“*”) lines represent the range of similarity scores when instances of the same worm are
correlated, and the open circle-marked (“o”) lines represent scores across CodeRed and CodeRed II—a very simple
measure of polymorphism. The other worms, which were inserted without fragmentation, all scored at or near 1, and
so are not shown.3

We can draw several conclusions. First, correlation of identical (non-polymorphic) attacks works perfectly and
accurately for all techniques. Most of the techniques can also correlate multiple instances of fragmented attacks; of

3 We could have artificially fragmented these worms to simulate the CodeRed experiment, but we expect similar results.

Fig. 2. Methods comparison. The correlation methods are, from 1 to 8, Raw-LCS; Raw-LCSeq; Raw-ED; Frequency-MD; Zstr-
LCS; Zstr-LCSeq; Zstr-ED; N-grams with n = 5.

the privacy-preserving techniques, MD, LCSeq and ED on Z-Strings, and n-gram analysis4 all perform well. (As
intuition may suggest, ZStr-LCS is not particularly effective.) Polymorphic worm detection is far harder—even in the
case of CR vs. CRII, only Raw-LCSeq and n-grams achieve promising results. N-gram analysis, in particular, stands
out; it produces accurate results and is particularly effective at eliminating false positives, and the use of BFs enables
privacy-preservation.

Signature Generation Correlating alerts across sites also enables the possibility of automatic signature generation
and deployment, once true alerts are identified. (We can also potentially use the scores computed during similarity
comparison as a “confidence” measure in mitigation strategies to determine whether to deploy a signature.)

Raw packet-based signatures. Given the ability to share raw alerts, we can exchange the LCS or LCSeq of highly
similar packets. This has been the subject of much recent work, is not privacy-preserving, and we do not discuss it
further here.

Byte frequency/Z-Strings. Given the first packet of a CodeRed II attack in figure 3 and its byte distribution
displayed in figure 4, we can generate a Z-String by ordering the distribution by most frequent to least and dropping
frequency information. Figure 5 shows the first 20 bytes of the generated Z-String for the distribution in figure 4,
with nonprintable characters shown by their ASCII values. Both frequency distributions and Z-Strings can be used as
signatures.

N-Grams. N-grams are an intriguing approach to signature generation; n-grams are position-independent, mak-
ing them robust to reordering and fragmentation. Additionally, if position information is kept, such a collection can
be transformed into a flat signature if desired. Figure 6 shows the results when a collection of 5-grams based on the

4 We do not distinguish between published raw n-grams and published BF-based n-grams here, as they produce virtually identical
results.

GET./default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXX
XXX
XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%u9090
%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%
u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u
00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u0

Fig. 3. Raw packet of CRII; only the first 301 bytes are shown for brevity.

CodeRed II example packet are “flattened”. Nonprintable characters are represented by “.”; “*” represents a wildcard
for signature matching. Compared to the original, figure 6 successfully captures the malicious encoding and deempha-
sizes the padding “noise”. Results with different n-gram sizes and another CRII packet are presented in an appendix
in the extended version of this paper on our website [6].

2 Worminator/Whirlpool

2.1 Architecture

We adopt two mechanisms in order to cope with the difficulties of distributed correlation and the potential volume
of data being correlated. First, the construction of Bloom filters by Worminator is employed to protect the confiden-
tiality of the data being exchanged between domains. Second, efficient information exchange is accomplished with a
distributed correlation scheduling algorithm. The scheduling algorithm dynamically calculates subsets of correlation
peers that should communicate to exchange Bloom filters. Since information is also compacted by the Bloom filter,
correlation between peers becomes extremely cost-effective in terms of bandwidth and processing power.

Requirements

1. The exchange of alert information must not leak potentially sensitive data.
2. Large alert rates hide stealthy activity; any reasonable solution must deal with or reduce the effects of these rates.
3. Centralized repositories are single points of failure and likely unable to correlate the burgeoning amount of alerts.
4. Exchanging alerts in a full mesh quadratically increases the complexity of the problem.
5. Any solution that partitions data among nodes risks information loss by disassociating evidence that should be

considered in the same context.

We make several assumptions about the environment the system exists in and the alert information the system ex-
changes. Our assumptions and choices are intended to carefully balance the requirements of data privacy with the need
to derive useful information and actionable intelligence from the alert exchange.

The environment and user base for a collaborative distributed intrusion detection system is an important consider-
ation. We envision cohorts of 25 to 100 organizations exchanging information. Such cohorts can be organizations with
similar interests, such as universities, financial institutions, military or government networks, energy companies, news
organizations, etc.

The sheer volume of alert streams is a critical consideration in the design and evaluation of any distributed intrusion
detection system. The size of current (and foreseeable) alert streams demands low–cost processing and correlation.
Alert streams can threaten to dominate network bandwidth if they are unnecessarily replicated.

Perhaps the most important decision we make is to employ the use of “watchlists,” or lists of IP addresses suspected
of subversive behavior. The task of the distributed detection system is not to analyze the network or host events of
other domains, but rather to correlate summaries of alerts to identify attackers. Therefore, watchlists encapsulate the
appropriate information to exchange.

Preserving Privacy While IDS alerts themselves could be distributed, there are two substantial disadvantages to
doing this: first, organizations may have privacy policies or concerns about sharing detailed IP data, some of which
might uncover who they normally communicate with. Second, these alert files grow rapidly given substantial traffic.

Fig. 4. Frequency distribution for the CRII packet.

88 0 255 117 48 85 116 37 232 100
100 106 69 133 137 80 254 1 56 51

Fig. 5. First 20 bytes of the Z-String computed from the CRII packet.

While parameters may be tweaked to reduce potential noise, a preferable solution would be to encode the relevant
information in a compact yet useful manner.

We provide a compact format via the use of Bloom filters. A Bloom filter is a one-way data structure that supports
two operations: insertion and verification, e.g., while no data can be extracted after being inserted in the Bloom filter,
it is probabilistically possible to see if specific data has been inserted if presented a second time to the Bloom filter.
This is accomplished by creating a compact bit vector (typically between 215 – 220 entries). Entries are indexed by the
hash of the original data, i.e., a high-quality hash of original data (in this case, IPs and port information) is generated,
broken up into parts, and these parts are used as indices into the bit vector. Each resolved index in the bit vector is set
to 1. This process is typically repeated multiple times (for different parts of the hash and/or different hashes), thereby
increasing resiliency to noise or data saturation. Verification is similar to insertion; instead of actually setting bits, the
bit vector is examined to determine if the bits are already set. Therefore, the IDS parses its alert output and generates
Bloom filters corresponding to (for example) IP/port endpoint data.

Since Bloom filters are compact one-way data structures, we get three benefits:

– Compactness: A Bloom filter smaller than 10k bits in size is still able to accurately verify tens of thousands of
entries.

– Resiliency, even when the Bloom filter is decreased in size: When the Bloom filter is saturated, it starts giving false
positives (i.e., multiple data entries resolve to the same locations in the bit vector), but never gives false negatives.
The false positives can be ameliorated by tuning or by correlation against multiple alert lists.

* /def*ult.ida?XXXX*XXXX%u9090%u6858%ucbd3%
u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u
cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8
b00%u531b%u53ff%u0078%u0000%u00=a HT*: 3379

Fig. 6. Generated 5-gram signature from the CRII packet; only the first 172 bytes are shown for brevity.

– Security: By utilizing a one-way data structure, organizations can correlate watchlists without releasing actual IP
data, satisfying privacy needs while being able to participate. If further security from outside observers is needed,
the dissemination protocol can be encapsulated in a secure tunnel, like SSL, thereby only granting Bloom filter
access to the set of participants in the alert list correlation.

Distributed Correlation A distributed correlation function must overcome the problems of a centralized model while
balancing the information loss inherent in partitioning alert data among different nodes. The most straightforward way
to accomplish distribution (forwarding all data from every node to every other node) involves a quadratic increase in
the amount of data exchanged.

More sophisticated approaches are based on two different theories. The first approach, which mirrors traditional
DHT-based P2P networks, creates an explicit mapping from alert data (specifically, source and target IP addresses)
to particular correlation nodes. The reasoning behind this approach is that source and target IP addresses are the two
most important features (besides target port) of alert data. With data about various machines collected in one node, the
majority of correlation can be accomplished at that node without communicating with other nodes (except to distribute
results of global interest).

The shortcoming of this approach is that nodes become special cases of the centralized model: they are single
points of failure for information pertaining to the IP address range being hashed. In addition, participants in the system
may be uncomfortable with storing their raw alert information at a single node. This approach invests too much trust
in each node. While a self–healing approach like Chord [10] can ameliorate the loss of a node, previous information
stored at that node is at best lost temporarily (for example, in the case of a denial of service,) or corrupted (in the case
of the node being compromised). Some of these shortcomings can be mitigated by replicating the data to some number
of other nodes; however, it is not clear what the appropriate balance is between fault–tolerance through replication and
utilization of network bandwidth and storage space. If data is replicated to every other node, we see an unacceptable
quadratic increase in the cost of the system. Furthermore, while DHT-based overlays provide a fast lookup() operation,
the performance of such networks under churn (rapid series of join() and leave() operations) is questionable [3].

The second theory attempts to address the limitations of the first approach by introducing a dynamic mapping
between nodes and content. This dynamic overlay network (as opposed to the largely static mappings of traditional
DHT-based overlay networks) implicitly incorporates the notion of churn and does not need to spend time rebuilding
neighbor (finger) tables. We observe that a theoretical optimal schedule exists for communicating information. If an
oracle existed in the network that answered with the appropriate subset of nodes that should talk given a particular
alert, links could be established between these nodes without talking to nodes with irrelevant data (e.g., without a
lookup() operation).

In this model, we assume that there is a set of nodes S of size N . We assume that there is some reliable mechanism
for any subset of nodes to communicate with each other. There is some discrete unit of knowledge K, that if known
would provide evidence of a distributed scan. During a distributed scan, some subset of S is scanned and now contains
a piece of knowledge Ki.

Normally, this knowledge would be discarded as insignificant. However, the optimal schedule allows this set of
nodes to perfectly guess which of its neighbors also contains a piece of K. Note that each node could also find this
information out via the O(N2) full mesh method of asking each other node in the network. However, we assert that
this method is too costly in terms of trust, network bandwidth, and disk storage.

The key idea in this optimal schedule is that the correct subsets of nodes are always communicating. In order to
mimic this behavior, the (approximately) correct nodes must talk to each other at (approximately) the right time. One
way of accomplishing such a schedule is to pick relationships at random. Another way is to employ a publish-subscribe
scheme.

Whirlpool: Network Scheduling There is a clear need for efficient alert correlation in large–scale distributed net-
works. To address this need, we introduce the notion of network scheduling: the controllable formation and dissolution
of relationships between nodes and groups of nodes in a network. These relationships can be envisioned as a dynamic
overlay. Our network scheduling mechanism is a procedure for coordinating the exchange of information between the
members of a correlation group. The mechanism is controlled by a dynamic and parameterizable correlation schedule.

Our approach is predicated on the previously described theoretical model of the optimal correlation schedule, the
shortcomings of a fully interconnected mesh of correlation nodes, and the limitations of the ideal centralized approach
to large–scale correlation. The main difficulty is that nodes would most likely discard data that in truth belong to a
distributed alert. We must develop a mechanism whereby a node can quickly conference with other peers and determine
whether or not a local alert is noise or signifies part of a distributed alert.

The basic architecture of network scheduling is a set of dynamic federations. Nodes that join and leave these
federations at various rates. The variance in rates is intended to allow federation groups to retain some stability while
expediting the import of new information into the group. Furthermore, this mechanism can be augmented with a
distributed learning algorithm that assists in promoting alerts discovered by the distributed correlation.

2.2 Implementation

Worminator The Worminator platform supports compact watchlist correlation via the replication and use of Bloom
filters [1] and uses the Antura network intrusion detection system [8] to generate alerts. The Antura NIDS has been
demonstrated to be an order-of-magnitude better at detecting long-term stealthy scans than competing products.

Our initial proof-of-concept version of Worminator ran at specific intervals on the computer running the Antura
sensor, parsed its alert output, and generated Bloom filters corresponding to IP/port endpoint data. These alerts were
then transmitted to a centralized node using HTTP, and correlation was manually initiated after-the-fact by download-
ing these Bloom filters from the centralized node. This proof-of-concept prototype demonstrated the feasibility of the
idea: in preliminary tests that correlated results from installations of Worminator at two academic sites, three common
sources of stealthy surveillance were detected: one each in Beijing, the Phillippines, and a small western US com-
munity college. These sources are most probably interested in the test sites to discover weakly protected (but usually
more powerful and better connected) university or research machines.

We have since evolved this version to better handle communication latency and privacy requirements. The current
version of Worminator is completely pluggable, and supports different sensor and alert types, correlators, and com-
munication frameworks. Just as importantly, it supports continuous validation; alerts from the sensor are exchanged
immediately, and correlation runs real-time to glean data as soon as possible to help prepare defenses against pending
attacks or fast-moving worms.

The goal is to enable sites to maintain a secure watchlist of alerts seen locally and from other sites, and to generate
a warnlist of significant threats if they have been correlated as having been seen at multiple sites. This warnlist can
then be reported to network administrators or could be directly mapped to firewall rules to prevent impending attacks.
Depending on privacy policies, these local warnlists may also be explicitly replicated to other sites to enable a fast
global-scale response.

Worminator consists of approximately 9,500 lines of Java code, and leverages a number of J2EE (Java 2 Enter-
prise Edition) providers, including the PostgreSQL JDBC provider (for querying databases), the Tomcat JSP/Servlet
container (for the user interface), and the JBossMQ JMS provider (for event transport).

2.3 Results

Worminator collaborative site experiment The new version of Worminator was deployed at four different sites in
the Northeast: two at Columbia (one on the perimeter of the Computer Science network and the other on the perimeter
of a campus dorm), one at a company in midtown Manhattan, and the last a research institution in Washington,
D.C. The Antura sensor was used as the source of alerts at each site, and Java Message Service, a publish-subscribe
communication infrastructure, was leveraged to support event distribution amongst the sites. This configuration was
run for approximately 96 hours. Information on source IPs and scan times were exchanged.

During the time, approximately 550,000 alerts were generated and exchanged. By far the most of these alerts
(roughly 75%) were at the Computer Science network. In addition to traffic passing through the perimeter of the
CS network, the CS sensor sees internal traffic between CS machines. (Ordinarily, the dorm network might be more

Source # alerts Alerts/hr # src IPs
CS 420425 4379 5226

Dorm 9838 204 290
Midtown 11394 118 1831
Wash DC 116560 1214 22568

Fig. 7. Statistics on the watchlist: Sites, number of alerts exchanged, and number of source IPs detected.

saturated with malicious traffic, but this data was taken during Spring Break, when many undergraduates leave campus.
The dorm sensor was also deployed later than the other sites, and had run for approximately two days.)

As Figure 7 implies, IPs generated more than one alert in some instances; nevertheless, the number of IPs is very
large for each site, making individual alerting difficult. A total of 29,731 unique IPs were seen. Next, we ran queries
to determine which sources were seen at two, three, or four sites.

of sites # common src IPs % reduction
Two 170 99.5%

Three 18 99.93%
Four 1 99.996%

Fig. 8. Statistics on the warnlist: the number of source IPs detected at two, three, and at four collaborating sites.

The reduction by examining the set of common sources is remarkable – only 18 of the 29,731 original source
IPs were observed at three sites. While this does not necessarily discount the other 29,713 IPs, the likelihood that
legitimate traffic exists between three of these four unrelated sites is extremely low, and simple port analysis can help
confirm this hypothesis. Note that, due to reduced activity at the dorm site, conclusions about the number of common
sources at all four sites is preliminary at best, but the one site that matched originated from China. Further analysis
from the CS sensor revealed that the machine was probing destination ports 1026 and 1027 – used by the Windows
Messenger service [4], strongly suggesting this IP was doing wholesale “pop-up” Internet spamming. While its activity
may have been benign, such a source is clearly indicative of undesirable traffic, and leveraging the warnlist makes it
easy to block such sources, be it undesirable or outright malicious.

We also performed some preliminary analysis on the two-site data to determine if a significant geographic distri-
bution existed (e.g., if more scans originated from any particular site). Figure 9 illustrates the results of the top eight
countries (which comprise 87% of the total scans – every other country contributed two or less IPs to the overall total).

As the chart shows, China dominates, with nearly 49% of the top eight countries and 41% overall amongst all
countries. This suggests that, despite the “great firewall of China”, outbound scans and probes are unaffected and
continue to propagate to a broad cross-section of the Internet.

One interesting footnote: while performing analysis on the two-site data, two alerts were generated for the IP
128.9.168.45. Reverse DNS revealed the URL to be http://ptr.isi.edu, which turns out to be an Inter-
net mapping server performing “low-volume” scans. Indeed, this source comprised only .00007% of the total alert
exchange, yet we were able to focus on the source with a minimum of effort.

This analysis only scratches the tip of the iceberg; it becomes clear, however, that useful data can easily be gleaned
with just a few sites exchanging alerts. We plan to increase the number of participating sites, which will greatly increase
the depth and breadth of the types of sources of surveillance and we expect it to further validate our approach.

Alert Rates Intrusion detection systems face the very real threat of information loss from the sheer rate of available
information. Schaelicke et al. [9] are decidedly pessimistic about the ability of relatively powerful commodity hard-
ware and network links to absorb peak alert loads, noting that an IDS is effectively neutralized by the loss of alert
data resulting from a database unable to keep up with incoming network data. This problem is compounded if multiple
NIDS sensors report to the same database system. DShield reports about 10 million alert records added daily. Figure 10
shows the increase in contributed data per month between January 2002 and May 2003.

CN

49%

HK

7%

JP

9%

KR

3%

PL

2%

TR

2%

TW

2%

US

26%

Fig. 9. Geographic distribution of attacks by country for 2-site-detected scans.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

0 2 4 6 8 10 12 14 16 18

to
ta

l
m

o
n

th
ly

 a
le

rt
 r

e
c
o

rd
s

month number

DShield Alert Volume per Month Jan 2002 - May 2003

records

Fig. 10. DShield monthly alert record contributions. The graph is not cumulative, but rather shows the rapid increase in contributed
alert information per month as DShield grew in popularity.

Event reduction and aggregation is a critical part of our system. Since we construct watchlists from very little
information (an IP address and a port), we are interested in ways of combining different alert information. Reduction
can be accomplished by filtering events either at the source sensor or prior to correlation processing. As a trivial
example of the latter, consider a series of 100 basic IDS alerts with the same source and destination IP information
and alert type information (e.g., “Host X probed host Y on port Z”). These alerts can be reduced to a single alert and a
frequency. If a significant portion of alert streams are amenable to this type of reduction, we can either perform more
expensive processing on the resulting stream, or produce actionable intelligence more rapidly. Inexpensive reduction
strategies (like logically grouping attacking IP source addresses in the same /24 subnet) can result in substantial
compression, as is aggregation of multiple scan alerts (one per port) by a single source into one overall alert announcing
a scan. For an example of the successful application of these reduction strategies,

Network Schedule Evaluation To evaluate the effectiveness of the Whirlpool network scheduling, we compare it
against a full mesh distribution scheme and a random selection distribution scheme. To that end, we introduce a
Bandwidth Effective Utilization Metric (BEUM). The BEUM is defined as:

BEUM =
1

t ∗ B

where t is the average number of time units it takes the distribution scheme to detect an attack and B is the amount of
bandwidth used by the distribution mechanism during that period. B is defined in terms of the total number of nodes,
N , communicating via the distribution mechanism. Thus, for a full mesh scheme we have:

B = N ∗ (N − 1)

and the time to discover an attack is t = 1. The BEUM for a full mesh distribution strategy is therefore 1
N∗(N−1) . For

a system of 100 nodes, the BEUM for a full mesh is 1
9900

The BEUM for a particular schedule where groups are kept at roughly
√

N is different and based on the calculation
of the bandwidth consumed, B:

BEUM =
1

t ∗ B

B = N ∗
√

N

In general, if t ≤
√

N , this particular schedule wins. Specifically, for a system of 100 nodes, the BEUM is 1
1000t

.
If t ≤ 9, this schedule is a better choice than a full mesh. Many other schedules are possible to balance the tradeoffs
between bandwidth, coverage, and latency and we are exploring methods for identifying optimal schedules given a set
of constraints.

We simulated a randomized scheduling strategy for a system of 100 nodes (performed over 1000 trials). Our
simulations indicate that on average, it takes 6 time units before an attack is detected using a repeated random schedule.
This time unit requirement satisfies the requirement for t ≤ 10 we derived for the BEUM. Figure 11 shows that even
though some pathological outliers exist, the vast majority of attacks are detected in a relatively short time.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

#
 o

f
ti
m

e
 s

li
c
e

s
 b

e
fo

re
 a

tt
a

c
k
 d

e
te

c
te

d

trial #

random detection

time slices

Fig. 11. Number of time slices until random distribution detects an attack. The average number for this particular data plot is 6 time
slices.

3 Longitudinal Study of Scan Behavior

This study of stealthy scan behavior is designed to demonstrate the proposed Worminator hypothesis, that collaborative
intrusion detection not only enables detection of worm spread but also scanning behavior as precursors to an attack.
There are three key longitudes for analysis:

1. Over time: as it is difficult to determine ahead of time when a widespread worm attack will occur, the goal here
is not necessarily to correlate certain scan behavior with particular attack behavior5, but to identify long-term

5 Correlating scan and attack behavior is difficult, unless known attacks occur during the scan period. While we collected much
interesting information, major Internet-scale attacks did not occur during the Worminator experiment, and so conclusions are not
predicated on such a correlation.

scanners who try to “fly under the radar” by throttling their scanning rates at any individual site to as little as a few
scans per day per IP. One can define a measure of stealthiness by looking at scan time windows, both on a local
(single-site) and on a global (many-site) basis.

2. Over geographical and network space: a clever attacker is unlikely to focus all their scanning efforts from a
single source; instead, the current trend is to spread scan efforts over a broad range of sources, and to leverage
those sources as a proxy to mask scanning behavior. Botnets ([5], [7]) are also becoming an increasingly common
tool for scans. By leveraging collaboration, the goal is to observe a wider destination space to ease detection of
broader networks of coordinated scanners.

3. By target: one key form of anonymity described in this thesis is that of anonymous but categorizable. This allows
for the exploration of targeted scans, e.g., sources that scan particular categories of networks but skip others. Here,
we compute aggregate statistics on the popularity of commercial vs. academic targets, etc. As of the writing of
this thesis, only two commercial sites have been deployed, so the results of this experiment are limited.

3.1 Scan Lengths and Stealthiness

As the Worminator system was design to observe long-term scanning behavior, the first question of relevance is the
actual scan behavior of sources, especially those who are observed at multiple sites. Table 2 shows aggregate scan
length results for sources (site/IPs, not site/IP/destination tuples) appearing at exactly 1 through 5 sites, in days, e.g.
source IPs seen at four sites were observed, on average, for a period of about 30 days.

Sites # (Site,IPs) Max Avg StDev
1 307050 373.57 7.14 33.12
2 22250 372.60 10.86 36.98
3 10074 373.64 17.20 47.01
4 3228 373.65 29.86 60.09
5 245 373.49 70.77 102.15

Table 2. Maximum and average scan lengths for 1–5 sites, by source IP/site, in days.

The conclusion is clear: sources which are observed at multiple sites tend to scan for longer periods. The most
likely explanation for this behavior at the small scale is the elimination of false positives; source IPs that are seen at
two or three sites often eliminate the local false alerts that IDSes typically observe. On the other hand, the dramatic
increase in average for 5 sites is interesting. Figure 12 shows a time plot of the scan lengths for sources that scanned 5
sites.

This suggests that, indeed, many 5-site-scanners were long-term, and that the high standard deviation is primarily
due to the limited length of the experiment (and the fact that not all sites were up for extended periods of time).
Unfortunately, conclusive results cannot be drawn from the small sample set, but still, the noticeably higher average
scan time suggests that many of these sources are long-term broad scanners—and that corroboration helps to identify
them.

These results do not take volume into account, however. In particular, if a scanner happens to be a machine that
aggressively scans all of its targets, that’s more easily detectable without corroboration. Of greater concern are scanning
sources that only generate a few alerts at each site over a long period of time. These scanners essentially fly under the
radar by hiding behind all the noise generated at individual sites. By corroborating and looking for the slowest scanners
over long periods of time, we can find, without difficulty, entities who are looking to do significant machine mapping.

To do this, we define a “stealthiness” metric St for any arbitrary source si, total scanning time ti and number of
alerts |a|i:

St(si) =
|a|i
ti

.

Low stealthiness levels amongst scanners at multiple sites is of particular interest; tables 3 and 4 show the top-10
stealthiest scanners detected across 4 and 5 sites, respectively.

As can be observed, there are scanners that issue only a few scans per site over the course of a year. Even more
interesting are the italicized entries—these are scanners from the same subnet! A quick lookup on that /24 yields the
results in table 5. ev1 is a major ISP in the United States, and this may have been the IP space of one “customer” (be

0 50 100 150 200 250
Feb 2005

Apr 2005

Jun 2005

Jul 2005

Sep 2005

Oct 2005

Dec 2005

Feb 2006

Mar 2006

Fig. 12. Scan length distribution, 5-site scanners.

it a legitimate customer whose machines were subverted against their knowledge, or an illegitimate customer using
the machines as a scanning source). The likelihood that these hosts were legitimately present at 5 disparate sites is
extremely unlikely, especially since several of the sites have absolutely no relationship with each other (excepting this
study; however, no Columbia IPs are listed above).

Further discussion about subnet analysis can be found later in this subsection.

3.2 Breadth and (Loud) Volume

As a counterpart to the previous subsection, Worminator should also ideally be able to identify the noisy sources—to
enable, for example, evidence of an active attack. There are various ways to establish a noisy source, including: the
aforementioned stealthiness metric can be used to determine the least stealthy source; the number of alerts generated
by the IDS may also serve as an indicator, regardless of scan length; and the number of sites a source appears at.
Figures 6–14 show the noisiest sources at 4 and 5 sites using the stealthiness and alert count metric, respectively.

The results shown here, especially the ones by stealthiness, are remarkable; for example, the top noisiest source
issued 331 alerts scattered amongst 5 sites over the space of two days; a quick port analysis yields that all of these
were to port 22 (ssh), suggesting a brute-force password attack against ssh servers. Moreover, a number of IPs in
61.152.* appear in the top 10 by both noise metrics. Of particular note was 61.152.158.109, which generated nearly
2,000 alerts over the stretch of three months at all five sources. A quick port analysis yields that these scan alerts were
distributed across ports 1026–1030, which is indicative of a Windows Messenger spammer. (As mentioned before,
active large-scale worm attacks were not observed during this period, but one can construe a UDP spammer as an
attacker, as scanning behavior will likely be similar.)

Scan Length
Source IP (days) # Alerts St

61.185.246.34 257.73 7 3.144e-07
207.218.223.98 302.96 9 3.438e-07
61.129.45.54 302.12 10 3.831e-07
207.218.223.91 270.71 9 3.848e-07
207.218.223.89 271.16 11 4.695e-07
207.218.223.93 301.50 13 4.990e-07
66.150.8.18 199.92 10 5.789e-07
62.189.244.254 287.28 17 6.849e-07
61.172.250.90 234.36 14 6.914e-07
206.253.195.10 293.14 19 7.502e-07

Table 3. Top 10 stealthy scanners detected at 4 sites.

Scan Length
Source IP (days) # Alerts St

207.218.223.92 300.14 12 4.628e-07
207.218.223.103 302.52 17 6.504e-07
69.7.175.21 293.50 41 1.617e-06
69.25.27.10 225.52 33 1.694e-06
161.170.254.232 299.29 51 1.972e-06
219.148.119.199 227.03 45 2.294e-06
66.151.55.10 303.12 62 2.367e-06
62.73.174.150 338.39 90 3.078e-06
64.41.241.171 338.39 90 3.078e-06
64.56.168.66 338.39 96 3.283e-06

Table 4. Top 10 stealthy scanners detected at 5 sites.

Given such metrics, a simple thresholding may enable automatic response with high confidence, which is ultimately
what is desired during an actual attack. Therefore, in addition to determining stealthy scanners, we can also identify
active attackers, to enable a comprehensive two-pronged approach.

3.3 Geographic Analysis

Given multiple-site corroboration, we can do some analysis to see if there is any correlation between multiple-site
scanners and geographic tendencies, by both the number of scanning sources and the number of alerts generated
by IDS sensors. A combination of DNS and WHOIS data was used to determine the geographic distribution of IP
addresses. Figures 15–19 show the results of this analysis. The country codes shown are the ISO codes used by
WHOIS. Countries with less than 1% of alerts or IPs are not shown, and are instead lumped into “Other”.

Source IP Scan length #alerts
12.130.50.213 373.49 5978
12.130.50.214 373.47 5589
61.152.91.69 56.19 3498
61.152.239.68 321.26 3311
219.138.199.170 47.73 2769
218.30.114.214 259.45 2436
70.86.131.171 48.94 1989
67.182.20.245 315.31 1869
68.114.241.56 307.77 1865
66.38.27.13 369.60 1853

Fig. 13. table
Top 10 noisy scanners by # alerts, 4 sites.

Source IP Scan length #alerts
212.176.49.56 302.58 3697
61.152.158.109 93.84 1920
69.133.97.207 364.95 1654
24.164.180.228 142.62 1300
199.97.98.40 368.12 1024
128.9.160.82 373.18 1017
128.9.160.251 373.49 1016
82.77.62.33 366.00 1012
128.9.160.83 373.18 1011
81.74.106.18 42.45 504

Fig. 14. table
Top 10 noisy scanners by # alerts, 5 sites.

Source IP #sites #alerts Scan len Hostname
207.218.223.92 5 12 300.14 ivhou-207-218-223-92.ev1servers.net
207.218.223.103 5 17 302.52 ivhou-207-218-223-103.ev1servers.net
207.218.223.89 4 11 271.16 ivhou-207-218-223-89.ev1servers.net
207.218.223.91 4 9 270.71 ivhou-207-218-223-91.ev1servers.net
207.218.223.93 4 13 301.50 ivhou-207-218-223-93.ev1servers.net
207.218.223.98 4 9 302.96 ivhou-207-218-223-98.ev1servers.net
207.218.223.94 3 10 300.44 ivhou-207-218-223-94.ev1servers.net
207.218.223.95 3 8 301.51 ivhou-207-218-223-95.ev1servers.net
207.218.223.97 3 8 63.06 ivhou-207-218-223-97.ev1servers.net
207.218.223.99 3 10 271.10 ivhou-207-218-223-99.ev1servers.net
207.218.223.102 3 10 297.12 ivhou-207-218-223-102.ev1servers.net
207.218.223.90 2 9 20.04 ivhou-207-218-223-90.ev1servers.net
207.218.223.101 2 5 270.55 ivhou-207-218-223-101.ev1servers.net
207.218.223.100 1 1 3.99 ivhou-207-218-223-100.ev1servers.net
207.218.223.132 1 4 2.12 ns1.rackshack.net
207.218.223.162 1 6 1.05 ns2.rackshack.net

Table 5. Subnet search results for 207.218.223.0/24.

Source IP Scan Length # Alerts St
61.143.210.244 0.07 137 2.224e-02
64.246.36.36 0.03 58 2.118e-02
58.215.64.204 0.03 45 2.022e-02
211.100.17.210 0.03 42 1.829e-02
202.103.178.214 0.02 33 1.817e-02
220.166.63.45 0.22 318 1.662e-02
211.76.177.154 0.13 174 1.567e-02
58.215.65.43 0.05 64 1.512e-02
222.191.251.92 0.09 111 1.488e-02
219.149.86.90 0.03 33 1.442e-02

Table 6. Top 10 noisy scanners by stealthiness, 4 sites.

The trend from 1-site to 4-site is clear: as more sites’ alerts are corroborated, the geographic distribution takes
an increasingly international bent; most notable is the shift from the US being the primary source of alerts to China.
Part of this is due to the fact that corroboration eliminates most of the false positives observed at local networks; for
example, most false positives in CUCS would be attributable to machines on the same LAN. This is already visible
in the second chart in figure 15, where the US actually has significantly more alerts than actual IP space. By the time
4-site scanners are counted, China has 45% of total alerts and 51% of IP addresses. 5-site scanners are somewhat of
an anomaly to this trend. However, the 5-site dataset is small, and it is difficult to draw concrete conclusions from it.
Further study is required to see how this trend continues when more sites are included (although it should be noted
that Russia seems to have a significant presence amongst 5-site scanners). What remains clear is that the largest source
of scan behavior emanates, by far, from two primary countries. This also suggests that, despite the “great firewall of
China”, outbound scans and probes are unaffected and continue to propagate to a broad cross-section of the Internet.

3.4 Scanning Subnets

As mentioned earlier, the presence of multiple scanners within the same subnet may be indicative of a coordinated scan
or attack, which may be of greater interest especially if multiple sites have seen the same behavior. To evaluate this, a
scan was made through the IP addresses collected through the IDS to see if any interesting outlier class C subnets (i.e.,
/24s) were found. To make this more accurate, the “number of sites” criterion was modified to act as a lower bound,
since not all addresses may have been detected at all sites. Table 8 shows the aggregate statistics for subnet scanners.

On average, very few IPs (≈ 1 − 2) are found to be scanners within any given subnet. This would imply that a
subnet with 115 scanners detected on at least two sites is a significant anomaly—60 standard deviations above the
mean, to be precise! To get a better feel of the outlier distribution of scanning subnets, figure 20 shows a logarithmic

Source IP Scan Length # Alerts St
149.205.192.85 1.85 331 2.069e-03
61.141.32.80 11.08 484 5.055e-04
61.152.158.109 93.84 1920 2.368e-04
212.176.49.56 302.58 3697 1.414e-04
81.74.106.18 42.45 504 1.374e-04
162.40.95.86 48.64 456 1.085e-04
24.164.180.228 142.62 1300 1.055e-04
69.40.165.231 33.58 282 9.720e-05
207.67.25.104 61.45 290 5.462e-05
69.133.97.207 364.95 1654 5.246e-05

Table 7. Top 10 noisy scanners by stealthiness, 5 sites.

US

54.05%

FR

24.15%

CN

5.16%

TT

2.94%

JP

2.22%

EU

1.56%

CA

1.05%

TW

1.03%
Other

7.85%

US

28.91%

FR

3.17%
CN

16.24%

TT 1.71%

JP

7.65%

EU

5.59%

CA

3.81%

TW

2.57%

KR

3.56%

DE

4.90%

AU

1.81%

BR

1.48%

IT

1.33%

PL

1.03%

MX

1.08%

ES

1.03% Other

14.13%

Fig. 15. Geographic distribution of 1-site scanners, by # of alerts and # of IPs.

graph of the largest subnets varying with the minimum number of sites the scanners are detected upon. While all of
the variations show a “long tail”, as more sites are involved the “head” of the tail becomes a larger outlier. While the
possibility remains that these IPs were independent and coincidentally happened to be many active blocks in the same
class C, the statistics make this extremely unlikely.

It is worth mentioning that newer scanning botnets are not necessarily restricted to single subnets; indeed, many
of the newer scanning approaches use a much broader range of machines, such as compromised computers distributed
across the Internet.

3.5 Target Analysis

One last significant form of analysis is looking for alerts that correspond to certain target longitudes, i.e., scanners
that may target commercial institutions but not academic institutions, or vice-versa. These may be indicative of scan
sources that are more than just purely automated—they may be actively scanning some entities and not others to build
more specific hitlists.

Given our collected data, a total of 2,095 sources matched these criteria; 311 sources targeted all three academic
institutions but neither of the two commercial ones, while 1,784 sources targeted both commercial institutions but
none of the three academic sites. Tables 9–12 show the top 10 for each, measured by number of alerts and stealthiness,
respectively, along with the top ports for the sources in question. A number of these correspond to well-known services;

US

50.80%

CN

19.75%

FR

10.54%

JP

3.98%

EU

1.61%

TW

1.51%

KR

1.32%

AU

1.15%

CA

1.09%
Other

8.25%

US

29.45%
CN

24.86%

FR

1.87%

JP

9.97%

EU

3.97%

TW

2.33%

KR

4.06%

AU

1.68%

CA

1.99%

PL

1.16%

GB

1.18%

IT

1.27%

DE

1.02%

BR

1.03%

HK

1.20%

BE

1.30% Other

11.67%

Fig. 16. Geographic distribution of 2-site scanners, by # of alerts and # of IPs.

CN

43.20%

US

42.14%

JP

4.54%

EU

1.87%

KR

1.42%

RU

1.18%
Other

5.64%

CN

48.06%

US

25.40%

JP

6.10%

EU

2.95%

KR

2.26%

TW

1.64%

AU

1.25%

HK

1.07% Other

11.26%

Fig. 17. Geographic distribution of 3-site scanners, by # of alerts and # of IPs.

a list of ports and their corresponding services can be obtained from /etc/services for any unix system or from IANA
http://www.iana.org/assignments/port-numbers.

What these four tables make clear is that there are both categories of targeted scanners—those that issue many scan
attempts against specific sites, and those that issue as few attempts as possible. The latter make intuitive sense; the
former, however, are more unusual; if a scanner is going to generate so many reports against disparate organizations,
why would they not broadly scan other networks? One might chalk it up to coincidence, although the volume of the
outliers (on the order of thousands of alerts) and scan length suggests that it is more than a coincidence.

CN

45.65%

US

41.07%

JP

3.66%

CA

2.95%

AU

1.28%

TW

1.27%
Other

4.13%

CN

51.80%

US

29.00%

JP

3.59%

CA

1.86%

AU

2.35%

TW

1.49%

KR

1.49%
Other

8.43%

Fig. 18. Geographic distribution of 4-site scanners, by # of alerts and # of IPs.

US

54.53%

RU

17.93%

CN

15.60%
RO

4.91%
IT

2.44% DE

2.17%
Other

2.42%

US

61.22%

RU

2.04%

CN

14.29%

RO

2.04%

IT

2.04%

DE

4.08%

ES

4.08%

FR

2.04%

JP

2.04%
GB

2.04% BR

2.04%
EU

2.04%
Other0.00%

Fig. 19. Geographic distribution of 5-site scanners, by # of alerts and # of IPs.

Additionally, we can note that these scanners appear to be targeting different services across domains. For instance,
academic sites seem to be more targeted for Messenger (port 1026) spam, while commercial sites seem to be targeted
more for SQL vulnerabilities (port 1434); while both are discussed in greater detail in the next subsection, there may
be both pragmatic and topological considerations behind these results.

In general, this form of analysis needs longer periods and broader data collection; ideally, such collection would
enable analysis per industry or segments of industry, instead of the current rough-granular academic vs. commercial.
Nevertheless, the results above show promise in this form of analysis.

Min Sites # /24s Avg StD Max
1 208763 1.54 3.45 254
2 10939 1.40 1.91 115
3 2882 1.46 1.50 23
4 703 1.22 0.69 10
5 46 1.11 0.37 3

Table 8. Statistics on scanning subnets.

Source IP Scan Length # Alerts Stealthiness Top Ports
218.94.124.43 206.47 2913 1.633e-04 8080, 3128, 8000
202.63.188.2 19.87 1062 6.187e-04 25, 3389, 202
61.233.40.205 99.78 832 9.651e-05 1028, 1029, 1032
221.12.161.99 89.81 717 9.240e-05 1029, 1028, 1032
61.138.136.28 74.40 499 7.763e-05 4257, 1029, 1031
193.6.40.135 0.19 482 2.881e-02 22
202.103.86.66 184.99 473 2.959e-05 1026, 1027, 2
62.195.115.67 13.07 331 2.931e-04 1026
219.157.19.157 69.76 319 5.293e-05 1028, 1029, 1030
67.176.227.12 25.38 309 1.409e-04 1026

Table 9. Academic-only scanners, top 10 by # alerts.

Source IP Scan Length # Alerts Stealthiness Top Ports
194.204.0.1 288.15 5 2.008e-07 53, 54463, 54558
193.92.150.3 256.93 5 2.252e-07 53, 1118, 32877
64.15.205.211 278.54 6 2.493e-07 1086, 1118, 32877
200.23.242.197 277.62 6 2.501e-07 46319, 32877, 46796
213.150.135.213 259.05 6 2.681e-07 53, 1118, 32782
68.142.249.189 171.66 4 2.697e-07 80, 53, 443
213.140.2.12 286.52 7 2.828e-07 1118, 56156, 59916
203.116.1.78 294.10 8 3.148e-07 34269, 33020, 32840
194.85.82.254 229.77 7 3.526e-07 80, 443, 42
68.142.251.21 96.37 3 3.603e-07 80, 8080, 8060

Table 10. Academic-only scanners, top 10 by stealthiness.

Source IP Scan Length # Alerts Stealthiness Top Ports
61.241.93.47 2.38 732 3.555e-03 783, 2622, 762
195.7.3.100 168.75 566 3.882e-05 15118
221.202.84.227 368.21 537 1.688e-05 1434
61.175.218.186 171.19 467 3.157e-05 1434
62.210.4.23 9.69 368 4.396e-04 1434
61.139.54.94 171.68 345 2.326e-05 1434, 1433
62.233.215.129 17.04 340 2.309e-04 15118, 445
80.231.169.58 372.60 317 9.847e-06 1434
202.103.207.139 83.90 303 4.180e-05 1434
61.153.15.163 142.26 262 2.132e-05 1434

Table 11. Commercial-only scanners, top 10 by # alerts.

3.6 Targeted Services

The other specific targeting of interest is service—namely, what services are the broad scanners particularly looking
at? And does this scan behavior differ significantly between narrow and broad scanners? Tables 21–30 show the top
15 targeted ports by 1- to 5-way scanning sources by both the number of IP and the frequency of alerts.

A few conclusions can be drawn from these figures. In particular, broad scanners frequently targeted different ports
than narrow scanners. Most notable was port 1026; the most common service on that port is the Windows Messenger

0 200 400 600 800 1000

Subnet #

20

21

22

23

24

25

26

27

28
#

 a
d

d
r
e
s
s
e
s
 i

n
 s

u
b

n
e
t

1 sites
2 sites
3 sites
4 sites
5 sites

Fig. 20. Distribution of scanning subnet sizes by varying # min sites. The top line is 1 site, and the bottom/leftmost line is 5 sites.

Source IP Scan Length # Alerts Stealthiness Top Ports
69.157.8.5 286.74 3 1.211e-07 80
219.140.177.20 343.79 4 1.347e-07 1434
61.183.37.164 320.83 4 1.443e-07 43868, 139, 19547
80.188.58.18 306.44 4 1.511e-07 445, 135
221.15.233.166 301.49 4 1.536e-07 80
202.145.48.193 296.50 4 1.561e-07 139
200.149.32.170 290.44 4 1.594e-07 139, 135
218.95.64.229 287.86 4 1.608e-07 1434
69.157.174.218 281.53 4 1.644e-07 135
220.229.76.66 348.90 5 1.659e-07 139

Table 12. Commercial-only scanners, top 10 by stealthiness.

service, listening for UDP messages. During the time period of this data collection, Windows Messenger spam was
still a major open target, and it appears many nodes were scanning for non-firewalled machines to deliver such spam.
[4] What is interesting is that these alerts were far more noticeable when corroborated across sites, as opposed to
individual site data. This may be due to the fact that unwanted or potentially malicious UDP traffic is far harder to
detect via misuse analysis without generating too many false positives, and so many IDS analysis techniques reduce
the weight of “suspicious UDP behavior” during their analysis and aggregation.

Port # IPs TotFreq
445 51537 999057
113 1087 967649
139 43079 790319
135 41054 753613

53 3320 635161
80 52716 452787

6881 819 309281
1025 60684 248797
1026 32966 244276
6346 1002 197356
1433 24683 185933
1434 9889 149863

25 1929 136517
137 6567 108274

33434 258 100873

Fig. 21. table
Top ports by frequency, 1+ site scans.

Port # IPs TotFreq
1026 2090 143753

33434 83 100067
53 533 98551

113 93 84649
1434 1380 83981

80 2685 65153
139 973 30470

1027 470 23372
137 303 15286

1024 578 14773
445 621 14169

3072 279 14120
1029 223 12583
1028 205 12370

25 282 11786

Fig. 22. table
Top ports by frequency, 2+ site scans.

Port # IPs TotFreq
1026 713 120073

33434 19 99128
1434 255 48687
1027 263 17332

80 431 16285
53 184 12578

1024 355 12334
3072 136 11851

113 38 11363
1029 107 8162
1028 103 8022

25 89 7721
1030 114 7113
1080 94 6288

135 414 5968

Fig. 23. table
Top ports by frequency, 3+ site scans.

Port # IPs TotFreq
1026 207 79425
1434 37 16786
1080 29 4742
1024 115 4453
3072 31 4196

135 98 3422
1029 33 3315
1028 30 3168
1030 30 2638

33437 21 2308
1027 101 2182

80 56 2131
33438 22 2015
33436 25 1792
33439 17 1596

Fig. 24. table
Top ports by frequency, 4+ site scans.

Port # IPs TotFreq
1026 11 6482
1080 4 3843
1029 6 2079
1028 5 1934
1030 5 1688

33436 9 880
135 7 842

33438 9 764
33437 8 744
33439 6 618
33440 4 376
33443 2 368

1434 1 352
80 4 346
22 2 335

Fig. 25. table
Top ports by frequency, 5+ site scans.

The same analysis can be applied to many of the high ephemeral ports, such as port 33435, 33436, etc. in tables
25 and 30; a quick investigation yields [2] that this is most likely Van Jacobsen-based traceroute packets, possibly
due to newer load-balancers trying to redirect traffic to the closest datacenter. More data, and more sites, may prove
to help glean more useful information in this regard. However, it is already clear that corroboration helps to identify
several “chatty” ports that are not ordinarily detected by good misuse detectors, and analysis strategies should likely
be reflected to include them.

One interesting change from 4-site to 5-site target results is the incidence reduction in port 1434 (MSSQL UDP).
Further analysis suggests that one of the sites appeared to be blocking inbound port 1434 traffic, presumably as a
preemptive firewalling strategy against Microsoft SQL-based worms. Ideally, a misuse sensor should be placed outside
the firewall; barring that, given enough sites and analysis, it should be possible to discount certain data at certain sites
due to firewalling or topology-specific considerations.

A more focused analysis of interest is to see which (IP, port) tuples have been observed across multiple sites. Tables
13 and 14 show the results for 4 and 5 sites, respectively, aggregated by scanner.

This form of analysis can, amongst other things, better help sites rank threats. If a site perceives certain services,
as delineated by ports, as more vulnerable, they may choose to adopt more proactive stances against sources known to
be broadly scanning those services across many sites, as opposed to ephemeral ports, possibly sign of a portscan or a

Port # IPs TotFreq
1025 60684 248797

80 52716 452787
445 51537 999057
139 43079 790319
135 41054 753613

1026 32966 244276
1433 24683 185933
6129 13236 62960

443 10339 59947
1434 9889 149863
2745 9068 83470
3127 8098 64363

137 6567 108274
5554 6151 23818
8080 5446 90736

Fig. 26. table
Top ports by # IPs, 1+ site scans.

Port # IPs TotFreq
80 2685 65153

1026 2090 143753
1434 1380 83981

135 1276 11556
1025 1175 11288

139 973 30470
34098 963 2519
22307 907 2034
54296 849 2320
23137 832 1977

1840 832 2467
26159 806 2163
14890 805 1718

1433 793 9753
49188 791 1971

Fig. 27. table
Top ports by # IPs, 2+ site scans.

Port # IPs TotFreq
1026 713 120073

22307 668 1601
23137 629 1613
34098 628 1763
14890 625 1399
26112 617 1460
50739 586 1497

6487 585 1241
54296 575 1658
26159 572 1598

1840 559 1709
14945 558 1406
54316 554 1313
20021 554 1276
11355 537 1292

Fig. 28. table
Top ports by # IPs, 3+ site scans.

Port # IPs TotFreq
1026 207 79425

26112 207 515
22307 206 515

6487 190 403
14890 188 424
34098 187 599
48148 182 399
60766 182 400
11355 180 479

5680 180 405
37948 178 395

4981 178 507
18183 175 383

5411 168 365
15201 167 375

Fig. 29. table
Top ports by # IPs, 4+ site scans.

Port # IPs TotFreq
1026 11 6482

33435 10 222
33436 9 880
33438 9 764
33437 8 744

135 7 842
137 7 258

1029 6 2079
33439 6 618

1028 5 1934
1030 5 1688

80 4 346
1027 4 177
1080 4 3843

33440 4 376

Fig. 30. table
Top ports by # IPs, 5+ site scans.

less-important protocol. The results in these tables suggest such a distribution; certain sources are very focused, e.g.,
69.25.135.154, which is scanning primarily HTTP ports versus 64.94.45.30, which is likely computing traceroutes as
discussed earlier.

References
1. Burton H. Bloom. Space/time trade-offs in Hash Coding with Allowable Errors. Communications of the ACM, 13(7):422–426,

1970.
2. Chase, Timothy. ISC SANS Intrusion Mailing List: UDP Traffic on Ports 33435-8, TCP on 2082 and 2745. http://lists.

sans.org/pipermail/intrusions/2004-August/008268.html.
3. Jinyang Li, Jeremy Stribling, Thomer M. Gil, and Robert Morris. Comparing the Performance of Distributed Hash Tables

Under Churn. In International Workshop on Peer-to-Peer Systems (IPTPS), San Diego, CA, 2004.
4. LURHQ Threat Intelligence Group. Windows Messenger Popup Spam on UDP Port 1026. http://www.lurhq.com/

popup_spam.html.
5. Bill McCarty. Botnets: Big and Bigger. IEEE Security and Privacy, 1(4):87–90, 2003.
6. Janak J. Parekh, Ke Wang, and Salvatore J. Stolfo. Privacy-Preserving Payload-Based Correlation for Accurate Malicious

Traffic Detection. Technical report, Columbia University Dept. of CS, 2006. http://mice.cs.columbia.edu/
getTechreport.php?techreportID=409.

Source IP # Ports Top Ports
211.154.222.56 81 1917, 1803, 1911, 1263, 1352
209.208.0.15 66 1080, 40934, 41457, 1813, 1978
218.30.70.56 49 1393, 1151, 1928, 1093, 1295
61.145.127.92 45 1614, 1674, 1450, 1286, 1087
60.31.184.7 29 1865, 1682, 1660, 1641, 1563
221.174.17.252 28 1639, 1499, 1834, 1642, 1577
69.25.135.154 7 8000, 81, 80, 8080, 8081
82.96.96.3 7 3128, 3802, 3777, 6588, 8080
65.223.84.131 6 2301, 8000, 80, 8080, 3124
199.181.135.4 6 33438, 33440, 33439, 33437, 33436
66.219.100.118 5 1080, 3128, 6588, 8080, 80
161.170.254.232 5 33438, 33436, 33441, 33444, 33435
166.91.254.4 5 2968, 2967, 2970, 2969, 8081
216.183.96.100 5 33439, 33438, 33437, 33436, 33435
61.137.117.208 4 1027, 1026, 1029, 1028

Table 13. Most popular (IP, port) tuples by source IP seen at 4 sites.

Source IP # Ports Top Ports
209.208.0.15 65 1080, 40934, 41457, 1813, 1978
216.183.96.100 4 33439, 33438, 33437, 33436
69.20.1.77 2 33440, 33438
221.12.161.109 2 1026, 1027
24.164.180.228 1 1026
61.141.32.80 1 80
64.94.45.30 1 33443
66.150.223.54 1 33443
66.151.55.10 1 33440
66.151.55.30 1 33439
66.179.168.100 1 33437
69.25.27.10 1 33440
69.40.165.231 1 1026
69.133.97.207 1 1026
81.74.106.18 1 1026

Table 14. Most popular (IP, port) tuples by source IP seen at 5 sites.

7. Honeynet Project and Research Alliance. Know your Enemy: Tracking Botnets, 3/13/05 2005. http://www.honeynet.
org/papers/bots/.

8. Seth Robertson, Eric V. Siegel, Matt Miller, and Salvatore J. Stolfo. Surveillance Detection in High Bandwidth Environments.
In DARPA Information Survivability Conference and Exposition (DISCEX), 2003.

9. Lambert Schaelicke, Matthew R. Geiger, and Curt J. Freeland. Improving the Database Logging Performance of the Snort
Network Intrusion Detection Sensor. Technical report, University of Notre Dame, 2002.

10. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In SIGCOMM, San Diego, 2001. ACM.

11. Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous Payload-based Worm Detection and Signature Generation. In
Symposium on Recent Advances in Intrusion Detection, Seattle, WA, 2005.

12. Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A Content Anomaly Detector Resistant to Mimicry Attack. In
Symposium on Recent Advances in Intrusion Detection, Hamburg, Germany, 2006.

13. Ke Wang and Salvatore J. Stolfo. Anomalous Payload-based Network Intrusion Detection. In Symposium on Recent Advances
in Intrusion Detection, Sophia Antipolis, France, 2004.

